

Application
 Structural design optimization of elastoplastic steel frames Integrated design optimization approach accounting for local and global structural performance requirements
 Aims: Progressive collapse resistance assessment of elastoplastic steel frames Investigation of cost due to additional system performance requirements Gain insight on the way the optimization procedure manages to meet system performance / robustness requirements Thus, actual aim is to: 'discover' how to meet robustness requirements with minimum cost (learn from optimization results)
• Input to: Activity 8: Robustness assessment of selected classes/types of structures/materials.

Conclusions

• Low-rise buildings (e.g. 3-storey frame)

Internal column removed:

the optimizer tends to produce strong corner columns and strong beams at storey 1, forming this way a type of **'bridge'** over the damaged region *(structural system activated locally)*

Corner column removed:

for relatively high progressive collapse resistance requirements, the optimizer tends to yield strong internal columns and **strong beams at all storeys**, while corner columns contribute very little *(structural system activated globally)*

• High-rise buildings (e.g. 12-storey frame)

Central or corner column removed:

the optimizer tends to introduce strong columns and **strong beams at all storeys** except for the few highest storeys (*structural system activated globally*)

As the demand for progressive collapse resistance becomes higher, the optimizer invokes more and stronger beams over the height of the structure *(activation of the structure as a system against the damage effect)*

25